
e04 – Minimizing or Maximizing a Function e04dgc

nag opt conj grad (e04dgc)

1. Purpose

nag opt conj grad (e04dgc) minimizes an unconstrained nonlinear function of several variables using
a pre-conditioned, limited memory quasi-Newton conjugate gradient method. The function is
intended for use on large scale problems.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_conj_grad(Integer n,
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
double x[], double *objf, double g[],
Nag_E04_Opt *options, Nag_Comm *comm, NagError *fail)

3. Description

This function uses a pre-conditioned conjugate gradient method and is based upon algorithm PLMA
as described in Gill and Murray (1979) and Gill et al(1981) Section 4.8.3.

The algorithm proceeds as follows:

Let x0 be a given starting point and let k denote the current iteration, starting with k = 0. The
iteration requires gk, the gradient vector evaluated at xk, the kth estimate of the minimum. At
each iteration a vector pk (known as the direction of search) is computed and the new estimate
xk+1 is given by xk + αkpk where αk (the step length) minimizes the function F (xk + αkpk) with
respect to the scalar αk. At the start of each line search an initial approximation α0 to the step αk

is taken as:

α0 = min{1, 2|Fk − Fest|/gk
T gk}

where Fest is a user-supplied estimate of the function value at the solution. If Fest is not specified,
the software always chooses the unit step length for α0. Subsequent step length estimates are
computed using cubic interpolation with safeguards.

A quasi-Newton method computes the search direction, pk, by updating the inverse of the
approximate Hessian (Hk) and computing

pk+1 = −Hk+1gk+1. (1)

The updating formula for the approximate inverse is given by

Hk+1 = Hk − 1
yk

T sk

(
Hkyksk

T + skyk
T Hk

)
+

1
yk

T sk

(
1 +

yk
T Hkyk

yk
T sk

)
sksk

T (2)

where yk = gk−1 − gk and sk = xk+1 − xk = αkpk.

The method used by nag opt conj grad to obtain the search direction is based upon computing pk+1

as −Hk+1gk+1 where Hk+1 is a matrix obtained by updating the identity matrix with a limited
number of quasi-Newton corrections. The storage of an n by n matrix is avoided by storing only
the vectors that define the rank two corrections – hence the term limited-memory quasi-Newton
method. The precise method depends upon the number of updating vectors stored. For example,
the direction obtained with the ‘one-step’ limited memory update is given by (1) using (2) with Hk

equal to the identity matrix, viz.

pk+1 = −gk+1 +
1

yk
T sk

(
sk

T gk+1yk + yk
T gk+1sk

) − sk
T gk+1

yk
T sk

(
1 +

yk
T yk

yk
T sk

)
sk

nag opt conj grad uses a two-step method described in detail in Gill and Murray (1979) in which
restarts and pre-conditioning are incorporated. Using a limited-memory quasi-Newton formula,

[NP3275/5/pdf] 3.e04dgc.1

nag opt conj grad NAG C Library Manual

such as the one above, guarantees pk+1 to be a descent direction if all the inner products yT
k sk are

positive for all vectors yk and sk used in the updating formula.

The termination criteria of nag opt conj grad are as follows:

Let τF specify a parameter that indicates the number of correct figures desired in Fk (τF is equivalent
to optim tol in the optional parameter list, see Section 7). If the following three conditions are
satisfied

(i) Fk−1 − Fk < τF (1 + |Fk|)
(ii) ‖xk−1 − xk‖ <

√
τF (1 + ‖xk‖)

(iii) ‖gk‖ ≤ τ
1/3
F (1+ |Fk|) or ‖gk‖ < εA, where εA is the absolute error associated with computing

the objective function

then the algorithm is considered to have converged. For a full discussion on termination criteria
see Gill et al (1981) Chapter 8.

4. Parameters
n

Input: the number n of variables.
Constraint: n ≥ 1.

objfun
objfun must calculate the objective function F (x) and its gradient at a specified point x.
The specification of objfun is:

void (*objfun)(Integer n, double x[], double *objf, double g[],
Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the objective function is required.

objf
Output: the value of the objective function F at the current point x.

g[n]

Output: g[i − 1] must contain the value of
∂F

∂xi

at the point x, for i = 1, 2, ..., n.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Input: comm->flag is always non-negative.
Output: if objfun resets comm->flag to some negative number then
nag opt conj grad will terminate immediately with the error indicator
NE USER STOP. If fail is supplied to nag opt conj grad fail.errnum will
be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of calculations of the objective function; this value will
be equal to the number of calls made to objfun including the current one.

user – double *
iuser – Integer *

3.e04dgc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

p – Pointer
The type Pointer will be void * with a C compiler that defines void * and
char * otherwise. Before calling nag opt conj grad these pointers may be
allocated memory by the user and initialised with various quantities for use
by objfun when called from nag opt conj grad.

Note: objfun should be tested separately before being used in conjunction with
nag opt conj grad. The array x must not be changed by objfun.

x[n]
Input: x0, an estimate of the solution point x∗.
Output: the final estimate of the solution.

objf
Output: the value of the objective function F (x) at the final iterate.

g[n]
Output: the objective gradient at the final iterate.

options
Input/Output: a pointer to a structure of type Nag E04 Opt whose members are optional
parameters for nag opt conj grad. These structure members offer the means of adjusting
some of the parameter values of the algorithm and on output will supply further details of
the results. A description of the members of options is given below in Section 7.
If any of these optional parameters are required then the structure options should be
declared and initialised by a call to nag opt init (e04xxc) and supplied as an argument to
nag opt conj grad. However, if the optional parameters are not required the NAG defined
null pointer, E04 DEFAULT, can be used in the function call.

comm
Input/Output: structure containing pointers for communication with user-supplied functions;
see the above description of objfun for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt conj grad; comm will then be declared internally for use in calls to user-supplied
functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialise fail and set fail.print = TRUE for this
function.

4.1. Description of Printed Output

Intermediate and final results are printed out by default. The level of printed output can be
controlled by the user with the structure member options.print level (see Section 7.2.). The default
print level of Nag Soln Iter provides the result of any derivative check, a single line of output at
each iteration and the final result.
The derivative check performed by default will give the directional derivative, g(x)T p, of the
objective gradient and its finite difference approximation, where p is a random vector of unit
length. If the gradient is believed to be in error then nag opt conj grad will exit with fail.code set
to NE DERIV ERRORS.

The line of results printed at each iteration gives

Itn the current iteration number k.

Nfun the cumulative number of calls to objfun. The evaluations needed for the
estimation of the gradients by finite differences are not included in the total
Nfun. The value of Nfun is a guide to the amount of work required for the
linesearch. nag opt conj grad will perform at most 16 function evaluations
per iteration.

Objective the current value of the objective function, F (xk).

Norm g the Euclidean norm of the gradient vector, ‖g(xk)‖.
Norm x the Euclidean norm of xk.

[NP3275/5/pdf] 3.e04dgc.3

nag opt conj grad NAG C Library Manual

Norm (x(k-1)-x(k)) the Euclidean norm of xk−1 − xk.

Step the step αk taken along the computed search direction pk. On reasonably
well-behaved problems, the unit step will be taken as the solution is
approached.

The printout of the final result consists of:

x the final point, x∗.

g the final gradient vector, g(x∗).

5. Comments

A list of possible error exits and warnings from nag opt conj grad is given in Section 8. Details of
timing and accuracy are given in Section 9.

6. Example 1

This example shows the simple use of nag opt conj grad where default values are used for all
optional parameters. An example showing the use of optional parameters is given in Section 12.
There is one example program file, the main program of which calls both examples. The main
program and example 1 are given below.
The example problem is to minimize the function

F = ex1(4x1
2 + 2x2

2 + 4x1x2 + 2x2 + 1).

6.1. Program Text

/* nag_opt_conj_grad (e04dgc) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <math.h>
#include <nag_stdlib.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *objf, double g[],

Nag_Comm *comm);
static void ex1(void);
static void ex2(void);
#else
static void objfun();
static void ex1();
static void ex2();
#endif

main()
{
/* Two examples are called, ex1() which uses the
* default settings to solve the problem and
* ex2() which solves the same problem with
* some optional parameters set by the user.
*/

Vprintf("e04dgc Example Program Results.\n");
Vscanf(" %*[^\n]"); /* Skip heading in data file */
ex1();
ex2();
exit(EXIT_SUCCESS);

}

3.e04dgc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

#ifdef NAG_PROTO
static void objfun(Integer n, double x[], double *objf, double g[],

Nag_Comm *comm)
#else

static void objfun(n, x, objf, g, comm)
Integer n;
double x[];
double *objf;
double g[];
Nag_Comm *comm;

#endif
{
/* Function to evaluate objective function and its 1st derivatives. */

double ex1, x1, x2;

ex1 = exp(x[0]);
x1 = x[0];
x2 = x[1];

objf = ex1(4*x1*x1 + 2*x2*x2 + 4*x1*x2 + 2*x2 + 1);

g[0] = 4*ex1*(2*x1 + x2) + *objf;
g[1] = 2*ex1*(2*x2 + 2*x1 + 1);

} /* objfun */

static void ex1()
{
Integer n;
double objf;
double x[2], g[2];
static NagError fail;

Vprintf("\ne04dgc example 1: no option setting.\n");

n = 2; /* Number of variables */

/* Set the initial estimate of the solution. */
x[0] = -1.0;
x[1] = 1.0;

/* Solve the problem. */
fail.print = TRUE;
e04dgc(n, objfun, x, &objf, g, E04_DEFAULT, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex1 */

6.2. Program Data

None; but there is an example data file which contains the optional parameter values for example
2 below.

6.3. Program Results

e04dgc Example Program Results.

e04dgc example 1: no option setting.

Parameters to e04dgc

Number of variables........... 2

max_line_step........... 1.00e+10 machine precision....... 1.11e-16
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01

f_prec.................. 4.37e-15
verify_grad.......Nag_SimpleCheck max_iter................ 50
print_level.........Nag_Soln_Iter print_gcheck............ TRUE
outfile................. stdout

[NP3275/5/pdf] 3.e04dgc.5

nag opt conj grad NAG C Library Manual

Verification of the objective gradients.
--

All objective gradient elements have been set.

Simple Check:

The objective gradient seems to be ok.
Directional derivative of the objective -1.47151776e-01
Difference approximation -1.47151796e-01

Results from e04dgc:

Iteration results:

Itn Nfun Objective Norm g Norm x Norm (x(k-1)-x(k)) Step
0 1 1.8394e+00 8.2e-01 1.4e+00
1 3 1.7243e+00 2.8e-01 1.3e+00 3.0e-01 3.7e-01
2 8 6.1573e-02 9.3e-01 9.2e-01 2.2e+00 1.6e+01
3 14 5.4363e-02 1.0e+00 9.6e-01 3.7e-02 1.6e-03
4 16 1.5564e-04 5.4e-02 1.1e+00 1.6e-01 4.9e-01
5 17 1.4416e-05 1.8e-02 1.1e+00 6.3e-03 1.0e+00
6 18 8.7638e-08 1.5e-03 1.1e+00 2.2e-03 1.0e+00
7 19 1.9420e-09 1.6e-04 1.1e+00 1.3e-04 1.0e+00
8 20 7.0496e-11 2.9e-05 1.1e+00 2.8e-05 1.0e+00
9 21 6.1100e-13 3.5e-06 1.1e+00 6.2e-06 1.0e+00

10 22 2.6725e-14 8.8e-07 1.1e+00 4.8e-07 1.0e+00

Final solution:

Variable x g
1 5.0000e-01 6.4441e-07
2 -1.0000e+00 5.9512e-07

Final objective function value = 2.6724546e-14.

Exit after 10 iterations and 22 function evaluations.

Optimal solution found.

7. Optional Parameters

A number of optional input and output parameters to nag opt conj grad are available through the
structure argument options, type Nag E04 Opt. A parameter may be selected by assigning an
appropriate value to the relevant structure member; those parameters not selected will be assigned
default values. If no use is to be made of any of the optional parameters the user should use the
NAG defined null pointer, E04 DEFAULT, in place of options when calling nag opt conj grad; the
default settings will then be used for all parameters.

Before assigning values to options directly the structure must be initialised by a call to the function
nag opt init (e04xxc). Values may then be assigned to the structure members in the normal C
manner.

Option settings may also be read from a text file using the function nag opt read (e04xyc) in which
case initialisation of the options structure will be performed automatically if not already done. Any
subsequent direct assignment to the options structure must not be preceded by initialisation.

If assignment of functions and memory to pointers in the options structure is required, then this
must be done directly in the calling program, they cannot be assigned using nag opt read (e04xyc).

7.1. Optional Parameter Checklist and Default Values

For easy reference, the following list shows the members of options which are valid for
nag opt conj grad together with their default values where relevant. The number ε is a generic
notation for machine precision (see nag machine precision (X02AJC)).

3.e04dgc.6 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

Boolean list TRUE
Nag PrintType print level Nag Soln Iter
char outfile[80] stdout
void (*print fun)() NULL
Nag GradChk verify grad Nag SimpleCheck
Boolean print gcheck TRUE
Integer obj check start 1
Integer obj check stop n
Integer max iter max(50,5n)
double f prec ε0.9

double optim tol f prec0.8

double linesearch tol 0.9
double max line step 1010

double f est
Integer iter
Integer nf

7.2. Description of Optional Parameters

list – Boolean Default = TRUE

Input: if options.list = TRUE the parameter settings in the call to nag opt conj grad will be
printed.

print level – Nag PrintType Default = Nag Soln Iter

Input: the level of results printout produced by nag opt conj grad. The following values are
available.

Nag NoPrint No output.
Nag Soln The final solution.
Nag Iter One line of output for each iteration.
Nag Soln Iter The final solution and one line of output for each iteration.

Constraint: options.print level = Nag NoPrint or Nag Soln or Nag Iter or Nag Soln Iter.

outfile – char[80] Default = stdout

Input: the name of the file to which results should be printed. If options.outfile[0] = ’\0’ then
the stdout stream is used.

print fun – pointer to function Default = NULL
Input: printing function defined by the user; the prototype of print fun is
void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

See Section 7.3.1. ¡dtext¿Section 9.3.1.¡/dtext¿ below for further details.

verify grad – Nag GradChk Default = Nag SimpleCheck

Input: specifies the level of derivative checking to be performed by nag opt conj grad on the
gradient elements defined in the user supplied function objfun.
verify grad may have the following values:

Nag NoCheck No derivative check is performed.
Nag SimpleCheck Perform a simple check of the gradient.
Nag CheckObj Perform a component check of the gradient elements.

If verify grad = Nag SimpleCheck then a simple ‘cheap’ test is performed, which requires
only one call to objfun. If verify grad = Nag CheckObj then a more reliable (but more
expensive) test will be made on individual gradient components. This component check will
be made in the range specified by options.obj check start and options.obj check stop, default
values being 1 and n respectively. The procedure for the derivative check is based on finding
an interval that produces an acceptable estimate of the second derivative, and then using
that estimate to compute an interval that should produce a reasonable forward-difference
approximation. The gradient element is then compared with the difference approximation.
(The method of finite difference interval estimation is based on Gill et al(1983)). The result
of the test is printed out by nag opt conj grad if options.print gcheck = TRUE.
Constraint: options.verify grad = Nag NoCheck or Nag SimpleCheck or Nag CheckObj.

[NP3275/5/pdf] 3.e04dgc.7

nag opt conj grad NAG C Library Manual

print gcheck – Boolean Default = TRUE

Input: if TRUE the result of any derivative check (see options.verify grad) will be printed.

obj check start – Integer Default = 1
obj check stop – Integer Default = n

Input: these options take effect only when options.verify grad = Nag CheckObj.
They may be used to control the verification of gradient elements computed by the function
objfun. For example, if the first 30 variables appear linearly in the objective, so that the
corresponding gradient elements are constant, then it is reasonable for obj check start to be
set to 31.
Constraint: 1 ≤ options.obj check start ≤ options.obj check stop ≤ n

max iter – Integer Default = max(50,5n)
Input: the limit on the number of iterations allowed before termination.
Constraint: options.max iter ≥ 0.

f prec – double Default = ε0.9

Input: this parameter defines εr, which is intended to be a measure of the accuracy with
which the problem function F can be computed. The value of εr should reflect the relative
precision of 1+ |F (x)|; i.e., εr acts as a relative precision when |F | is large, and as an absolute
precision when |F | is small. For example, if F (x) is typically of order 1000 and the first
six significant digits are known to be correct, an appropriate value for εr would be 1.0e−6.
In contrast, if F (x) is typically of order 10−4 and the first six significant digits are known
to be correct, an appropriate value for εr would be 1.0e−10. The choice of εr can be quite
complicated for badly scaled problems; see Chapter 8 of Gill et al(1981), for a discussion
of scaling techniques. The default value is appropriate for most simple functions that are
computed with full accuracy. However when the accuracy of the computed function values is
known to be significantly worse than full precision, the value of εr should be large enough so
that nag opt conj grad will not attempt to distinguish between function values that differ by
less than the error inherent in the calculation.
Constraint: ε ≤ options.f prec < 1.0.

optim tol – double Default = f prec0.8

Input: specifies the accuracy to which the user wishes the final iterate to approximate a
solution of the problem. Broadly speaking, optim tol indicates the number of correct figures
desired in the objective function at the solution. For example, if optim tol is 10−6 and
nag opt conj grad terminates successfully, the final value of F should have approximately
six correct figures. nag opt conj grad will terminate successfully if the iterative sequence of
x-values is judged to have converged and the final point satisfies the termination criteria (see
Section 3, where τF represents optim tol).
Constraint: options.f prec ≤ options.optim tol < 1.0.

linesearch tol – double Default = 0.9
Input: controls the accuracy with which the step α taken during each iteration approximates
a minimum of the function along the search direction (the smaller the value of linesearch tol,
the more accurate the linesearch). The default value requests an inaccurate search, and
is appropriate for most problems. A more accurate search may be appropriate when it is
desirable to reduce the number of iterations – for example, if the objective function is cheap
to evaluate.
Constraint: 0.0 ≤ options.linesearch tol < 1.0.

max line step – double Default = 1010

Input: defines the maximum allowable step length for the line search.
Constraint: options.max line step > 0.0.

f est – double
Input: specifies the user-supplied guess of the optimum objective function value. This value
is used by nag opt conj grad to calculate an initial step length (see Section 3). If no value
is supplied then an initial step length of 1.0 will be used but it should be noted that for
badly scaled functions a unit step along the steepest descent direction will often compute the
function at very large values of x.

3.e04dgc.8 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

iter – Integer
Output: the number of iterations which have been performed in nag opt conj grad.

nf – Integer
Output: the number of times the objective function has been evaluated (i.e., number of calls
of objfun). The total excludes the calls made to objfun for purposes of derivative checking.

7.3. Description of Printed Output

The level of printed output can be controlled with the structure members options.list,
options.print gcheck and options.print level (see Section 7.2.).¡dtext¿Section 9.2).¡/dtext¿ If list
= TRUE then the parameter values to nag opt conj grad are listed, followed by the result of any
derivative check if print gcheck = TRUE. The printout of the optimization results is governed by
the value of print level. The default of print level = Nag Soln Iter provides a single line of output
at each iteration and the final result. This section describes all of the possible levels of results
printout available from nag opt conj grad.

If a simple derivative check, options.verify grad = Nag SimpleCheck, is requested then the
directional derivative, g(x)T p, of the objective gradient and its finite difference approximation
are printed out, where p is a random vector of unit length.
When a component derivative check, options.verify grad = Nag CheckObj, is requested then the
following results are supplied for each component:

x[i] the element of x.

dx[i] the optimal finite difference interval.

g[i] the gradient element.

Difference approxn. the finite difference approximation.

Itns the number of trials performed to find a suitable difference interval.
The indicator, OK or BAD?, states whether the gradient element and finite difference approximation
are in agreement.

If the gradient is believed to be in error nag opt conj grad will exit with fail.code set to
NE DERIV ERRORS.

When options.print level = Nag Iter or Nag Soln Iter a single line of output is produced on
completion of each iteration, this gives the following values:

Itn the current iteration number k.

Nfun the cumulative number of calls to objfun. The evaluations needed for the
estimation of the gradients by finite differences are not included in the total
Nfun. The value of Nfun is a guide to the amount of work required for the
linesearch. nag opt conj grad will perform at most 16 function evaluations
per iteration.

Objective the current value of the objective function, F (xk).

Norm g the Euclidean norm of the gradient vector, ‖g(xk)‖.
Norm x the Euclidean norm of xk.

Norm(x(k-1)-x(k)) the Euclidean norm of xk−1 − xk.

Step the step α taken along the computed search direction pk.

If options.print level = Nag Soln or Nag Soln Iter, the final result is printed out. This consists of:

x the final point, x∗.

g the final gradient vector, g(x∗).

If options.print level = Nag NoPrint then printout will be suppressed; the user can print the final
solution when nag opt conj grad returns to the calling program.

[NP3275/5/pdf] 3.e04dgc.9

nag opt conj grad NAG C Library Manual

7.3.1. Output of results via a user defined printing function

Users may also specify their own print function for output of the results of any gradient check, the
optimization results at each iteration and the final solution. The user defined print function should
be assigned to the options.print fun function pointer, which has prototype

void (*print_fun)(const Nag_Search_State *st, Nag_Comm *comm);

The rest of this section can be skipped if the default printing facilities provide the required
functionality.

When a user defined function is assigned to options.print fun this will be called in preference to the
internal print function of nag opt conj grad. Calls to the user defined function are again controlled
by means of the options.print gcheck and options.print level members. Information is provided
through st and comm the two structure arguments to print fun.

If comm->it prt = TRUE then the results from the last iteration of nag opt conj grad are in the
following members of st:

n – Integer
the number of variables.

x – double *
points to the n memory locations holding the current point xk.

f – double
the value of the current objective function.

g – double *
points to the n memory locations holding the first derivatives of F at the current point xk.

step – double
the step α taken along the search direction pk.

xk norm – double
the Euclidean norm of xk−1 − xk.

iter – Integer
the number of iterations performed by nag opt conj grad.

nf – Integer
the cumulative number of calls made to objfun.

If comm->g prt = TRUE then the members

n – Integer
the number of variables.

x – double *
points to the n memory locations holding the initial point x0,

g – double *
points to the n memory locations holding the first derivatives of F at the initial point x0.

are set, and the details of any derivative check performed by nag opt conj grad are held in the
following substructure of st:

gprint – Nag GPrintSt
which in turn contains two substructures g chk, f sim and a pointer to an array of
substructures, *f comp.

g chk – Nag Grad Chk St
the substructure g chk contains the members:

type – Nag GradChk
the type of derivative check performed by nag opt conj grad. This will be the
same value as in options.verify grad.

3.e04dgc.10 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

g error – int
this member will be equal to one of the error codes NE NOERROR or
NE DERIV ERRORS according to whether the derivatives were found to be
correct or not.

obj start – Integer
specifies the gradient element at which any component check started. This value
will be equal to options.obj check start.

obj stop – Integer
specifies the gradient element at which any component check ended. This value
will be equal to options.obj check stop.

f sim – Nag SimSt
The result of a simple derivative check, gprint->g chk.type = Nag SimpleCheck, will
be held in this substructure which has members:

correct – Boolean
if TRUE then the objective gradient is consistent with the finite difference
approximation according to a simple check.

dir deriv – double
the directional derivative g(x)T p where p is a random vector of unit length with
elements of approximately equal magnitude.

fd approx – double

the finite difference approximation,
F (x + hp) − F (x)

h
, to the directional

derivative.

f comp – Nag CompSt *
The results of a component derivative check, gprint->g chk.type = Nag CheckObj, will
be held in the array of n substructures of type Nag CompSt pointed to by f comp.
The procedure for the derivative check is based on finding an interval that produces an
acceptable estimate of the second derivative, and then using that estimate to compute
an interval that should produce a reasonable forward-difference approximation. The
gradient element is then compared with the difference approximation. (The method of
finite difference interval estimation is based on Gill et al(1983)).

correct – Boolean
if TRUE then this objective gradient component is consistent with its finite
difference approximation.

hopt – double
the optimal finite difference interval. This is dx[i] in the NAG default printout.

gdiff – double
the finite difference approximation for this gradient component.

iter – Integer
the number of trials performed to find a suitable difference interval.

comment – char *
a character string which describes the possible nature of the reason for which an
estimation of the finite difference interval failed to produce a satisfactory relative
condition error of the second-order difference. Possible strings are: "Constant?",
"Linear or odd?", "Too nonlinear?" and "Small derivative?".

The relevant members of the structure comm are:

g prt – Boolean
will be TRUE only when the print function is called with the result of the derivative check
of objfun.

it prt – Boolean
will be TRUE when the print function is called with the result of the current iteration.

[NP3275/5/pdf] 3.e04dgc.11

nag opt conj grad NAG C Library Manual

sol prt – Boolean
will be TRUE when the print function is called with the final result.

user – double *
iuser – Integer *
p – Pointer

pointers for communication of user information. If used they must be allocated memory by
the user either before entry to nag opt conj grad or during a call to objfun or print fun. The
type Pointer will be void * with a C compiler that defines void * and char * otherwise.

8. Error Indications and Warnings

NE USER STOP
User requested termination, user flag value = 〈value〉.
This exit occurs if the user sets comm->flag to a negative value in objfun. If fail is supplied
the value of fail.errnum will be the same as the user’s setting of comm->flag.

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE OPT NOT INIT
Options structure not initialised.

NE BAD PARAM
On entry parameter options.print level had an illegal value.
On entry parameter options.verify grad had an illegal value.

NE INVALID INT RANGE 1
Value 〈value〉 given to options.max iter not valid. Correct range is max iter ≥ 0.

NE INVALID REAL RANGE F
Value 〈value〉 given to options.max line step not valid. Correct range is max line step > 0.0.

NE INVALID REAL RANGE EF
Value 〈value〉 given to options.f prec not valid. Correct range is ε ≤ f prec < 1.0.
Value 〈value〉 given to options.optim tol not valid. Correct range is 〈value〉≤ optim tol < 1.0.

NE INVALID REAL RANGE FF
Value 〈value〉 given to options.linesearch tol not valid. Correct range is 0.0 ≤ linesearch tol
< 1.0.

NE ALLOC FAIL
Memory allocation failed.

NW TOO MANY ITER
The maximum number of iterations, 〈value〉, have been performed.

If the algorithm appears to be making progress the value of options.max iter value may be
too small (see Section 7), and rerun nag opt conj grad. If the algorithm seems to be ‘bogged
down’, the user should check for incorrect gradients or ill-conditioning as described below
under NW NO IMPROVEMENT.

NW STEP BOUND TOO SMALL
Computed upper-bound on step length was too small

The computed upper bound on the step length taken during the linesearch was too small.
A rerun with an increased value of options.max line step (ρ say) may be successful unless
ρ ≥ 1010 (the default value), in which case the current point cannot be improved upon.

NW NO IMPROVEMENT
A sufficient decrease in the function value could not be attained during the final linesearch.
Current point cannot be improved upon.

If objfun computes the function and gradients correctly, then this warning may occur because
an overly stringent accuracy has been requested, i.e., options.optim tol is too small or if the

3.e04dgc.12 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

minimum lies close to a step length of zero. In this case the user should apply the tests
described in Section 3 to determine whether or not the final solution is acceptable. For a
discussion of attainable accuracy see Gill et al(1981).

If many iterations have occurred in which essentially no progress has been made or
nag opt conj grad has failed to move from the initial point, then the function objfun may
be incorrect. The user should refer to the comments below under NE DERIV ERRORS and
check the gradients using the options.verify grad parameter. Unfortunately, there may be
small errors in the objective gradients that cannot be detected by the verification process.
Finite-difference approximations to first derivatives are catastrophically affected by even small
inaccuracies.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

This value of fail.code will occur if the verification process indicated that at least one gradient
component had no correct figures. The user should refer to the printed output to determine
which elements are suspected to be in error.

As a first step, the user should check that the code for the objective values is correct – for
example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It
is remarkable how often the values x = 0 or x = 1 are used to test function evaluation
procedures, and how often the special properties of these numbers make the test meaningless.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the
inaccurate calculation of a subsidiary quantity, or the limited accuracy of data upon which
the function depends.

NE GRAD TOO SMALL
The gradient at the starting point is too small, rerun the problem at a different starting point.

The value of g(x0)
T g(x0) is less than ε|F (xo)|, where ε is the machine precision.

NE NOT APPEND FILE
Cannot open file 〈string〉 for appending.

NE WRITE ERROR
Error occurred when writing to file 〈string〉.

NE NOT CLOSE FILE
Cannot close file 〈string〉.

9. Further Comments

9.1. Timing

Problems whose Hessian matrices at the solution contain sets of clustered eigenvalues are likely to
be minimized in significantly fewer than n iterations. Problems without this property may require
anything between n and 5n iterations, with approximately 2n iterations being a common figure for
moderately difficult problems.

9.2. Accuracy

On successful exit the accuracy of the solution will be as defined by the optional parameter
optim tol.

10. References

Gill P E and Murray W (1979) Conjugate-gradient Methods for Large-scale Nonlinear Optimization
Department of Operations Research, Stanford University, Technical Report SOL 79–15.

Gill P E, Murray W, Saunders M A and Wright M H (1983) Computing Forward-Difference Intervals
for Numerical Optimization, SIAM J. Sci. Stat. Comput. 4 310–321.

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press, London.

[NP3275/5/pdf] 3.e04dgc.13

nag opt conj grad NAG C Library Manual

11. See Also

nag opt init (e04xxc)
nag opt read (e04xyc)
nag opt free (e04xzc)

12. Example 2

Example 2 solves the same problem as Example 1 but shows the use of certain optional parameters.
The options structure is declared and five option values are read from a data file by use of
nag opt read (e04xyc).

12.1. Program Text

static void ex2()
{
Integer n;
double objf;
double x[2], g[2];
Boolean print;
Nag_E04_Opt options;
static NagError fail;

Vprintf("\n\ne04dgc example 2: using option setting.\n");

/* Read option values from file */
fail.print = TRUE;
print = TRUE;
e04xyc("e04dgc", "stdin", &options, print, "stdout", &fail);
if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);

n = 2; /* Number of variables */

/* Set the initial estimate of the solution. */
x[0] = -1.0;
x[1] = 1.0;

/* Solve the problem. */
e04dgc(n, objfun, x, &objf, g, &options, NAGCOMM_NULL, &fail);

if (fail.code != NE_NOERROR) exit(EXIT_FAILURE);
} /* ex2 */

12.2. Program Data

e04dgc Example Program Data

Following options for e04dgc are read by e04xyc in example 2.

begin e04dgc

print_level = Nag_Soln /* Print solution only */

max_iter = 30 /* Set iteration limit */

verify_grad = Nag_CheckObj /* Check objective gradient components */

max_line_step = 1.0e+2 /* Maximum allowable step length */

f_est = 1.0 /* Estimate of optimal function value */

end

12.3. Program Results

e04dgc example 2: using option setting.

Optional parameter setting for e04dgc.

Option file: stdin

3.e04dgc.14 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04dgc

print_level set to Nag_Soln
max_iter set to 30
verify_grad set to Nag_CheckObj
max_line_step set to 1.00e+02
f_est set to 1.00e+00

Parameters to e04dgc

Number of variables........... 2

max_line_step........... 1.00e+02 machine precision....... 1.11e-16
optim_tol............... 3.26e-12 linesearch_tol.......... 9.00e-01
f_est................... 1.00e+00 f_prec.................. 4.37e-15
verify_grad......... Nag_CheckObj max_iter................ 30
print_level......... Nag_Soln print_gcheck............ TRUE
outfile................. stdout

Verification of the objective gradients.
--

All objective gradient elements have been set.

The objective gradient seems to be ok.
Directional derivative of the objective -1.47151776e-01
Difference approximation -1.47151796e-01

Component-wise check:

i x[i] dx[i] g[i] Difference approxn. Itns.
1 -1.00e+00 1.64e-07 3.67879441e-01 3.67879441e-01 OK 1
2 1.00e+00 1.84e-07 7.35758882e-01 7.35758882e-01 OK 1

2 objective gradient elements out of the 2 assigned,
set in columns 1 through 2, seem to be ok.

The largest relative error was 1.02e-10 in element 1

Results from e04dgc:

Final solution:

Variable x g
1 5.0000e-01 1.3247e-07
2 -1.0000e+00 3.0215e-08

Final objective function value = 7.3217934e-16.

Exit after 9 iterations and 19 function evaluations.

Optimal solution found.

[NP3275/5/pdf] 3.e04dgc.15

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

